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Clinicians, including physicians and therapists, have developed prognos-
tications for expectations of functional outcomes after spinal cord injury
(SCI) [1]. Outcomes expected 1 year after injury are based on the initial level
of injury and the initial degree of voluntary strength of the muscles below
the level of injury [2]. Rehabilitation planning and outcomes relative to in-
dependence, self-care, and mobility are based on the degree of neurologic
impairment assessed by a standardized neurologic evaluation developed
by the American Spinal Injury Association (ASIA) and termed the ASIA
Impairment Scale (AIS) [1,3-6]. The magnitude and rate of recovery de-
pends on the initial injury severity and whether it is complete (AIS A), sen-
sory incomplete (AIS B), or motor incomplete (AIS C or D) [3,7-12], with
motor incomplete injuries showing a more rapid rate of recovery. The rate
of recovery is measured by the relative change in the motor and sensory
scores over time and declines substantially after 6 months to 1 year after
SCI [13].
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The loss of standing and walking after human SCI has been attributed to
the dominance of supraspinal mechanisms over spinal mechanisms in the
control of locomotion [14—17]. Thus, pharmacologic [18-22] and surgical in-
terventions [23,24] have been the predominant focus for altering the course
of natural recovery by improving functional outcomes after SCI. These in-
terventions are associated with medical management during the acute phase
after SCI to diminish the damaging sequelae of acute SCI including swelling
or cord impingement. From this vantage point, recovery has been equated
with improvements according to the AIS evaluation of voluntary strength
and sensation and associated functional gains in abilities [25].

Physical rehabilitation as compensation for irremediable
deficits and new skill development

Physical rehabilitation after SCI has relied substantially on compensatory
strategies for identified nonremediable impairments and deficits, because sig-
nificant recovery of motor function was not expected beyond that defined by
the clinical assessments. In addition, health care provider limitations have sig-
nificantly reduced the number and duration of therapy sessions necessitating
that therapists target immediate patient needs in preparation for discharge
[26]. New behavioral strategies are taught to accomplish tasks including roll-
ing over in bed, getting up from the floor to a chair, and transferring in and out
of a wheelchair [27-29]. Each of these new skills relies on strengthening of
muscles above the level of the lesion and use leverage, momentum, and substi-
tution to aid in moving a weak or paralyzed body for new mobility skills
[27,30]. These individuals with SCI usually do not recover their preinjury abil-
ity to roll over in bed, dress, stand up, grasp a glass, or get in and out of a car,
but instead develop an entirely new repertoire of movement strategies to ac-
complish daily activities or they remain dependent on others for assistance.
The process of learning these new skills requires practice and repetition,
and the ability to problem-solve to find unique approaches to maneuver suc-
cessfully through the myriad of circumstances and environments of daily life.

Additionally, wheelchairs, assistive devices, and braces are incorporated
into the new skill learning associated with mobility [27-29]. Wheelchairs of-
fer a means of alternative mobility from a seated position and require the
acquisition of new skills to propel and maneuver the equipment using the
arms, head, chin, breath, or hand controls. Leg braces and assistive devices
provide stability for joints that cannot be activated voluntarily and when
muscle strength is not adequate to support upright posture during standing
and walking. For example, walking using leg braces and a walker is highly
dependent on voluntary motor control above the level of lesion and assis-
tance from the devices to achieve a new approach to stability and mobility.
However, accomplishing the activities of daily living using compensatory
strategies is not equivalent to recovery of motor control that restores
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preinjury capabilities (ie, walking upright at normal speed, negotiating ob-
stacles with balance responses, and climbing stairs) [31-38].

Conventional gait training post-SCI is routinely conducted over ground.
A tilt table, parallel bars, assistive devices, and braces are all used to achieve
upright standing and compensate for lower extremity and trunk weakness or
paralysis and possibly upper extremity weakness [27-29]. Walking in the
overground environment is certainly the end goal and thus readily
experienced in this environment. However, without substantial evidence of
recovery of voluntary control below the lesion, those with SCI are instructed
to achieve walking via compensatory strategies. These strategies use passive
external lower extremity support (braces) and upper extremity weight bear-
ing (assistive devices) to overcome sensorimotor deficits.

Emerging physical rehabilitation: activity-based therapies for recovery
of function after spinal chord injury

Evidence from basic and applied science for activity-dependent plasticity of
the neural axis, including the spinal cord, has provided a new perspective on
the role of physical rehabilitation for the recovery of motor function after SCI
[39-43]. Research studies in animals and humans that have found that retrain-
ing after SCI using the intrinsic physiologic properties of the nervous system
can facilitate the recovery of function [41,42,44,45]. This potential for retrain-
ing is based on activity-dependent plasticity driven by repetitive task-specific
sensory input to spinal networks. These studies show that the spinal cord in-
tegrates supraspinal and afferent information and with repetitive practice can
improve motor output. With the translation of these scientific findings to the
human condition, rehabilitation strategies emerged that use the intrinsic
processes of the nervous system in response to task-specific activity to advance
and improve recovery of function after SCI [39,40,46-49].

Activity-based therapy has recently been promoted at prominent rehabil-
itation centers in the United States to describe their therapeutic interven-
tions [50-57]. However, the term is used ubiquitously often to describe the
usual compensatory approaches to regain the ability to perform specific
functions. In the scientific literature, activity-dependent plasticity is a term
that has general consensus to indicate changes in the nervous or muscular
systems that are driven by repetitive activity [58]. Thus, activity-based ther-
apy specifically refers to interventions that provide activation of the neuro-
muscular system below the level of lesion with the goal of retraining the
nervous system to recover a specific motor task. The approach is to evaluate
the neurophysiologic state below the level of lesion [59-62] and phase of
recovery and then use repetitive practice of the desired task to functionally
reorganize the nervous system [41]. So an activity-based therapy is an inter-
vention that results in neuromuscular activation below the level of the lesion
to promote recovery of motor function with the activation driven by the ner-
vous system as most desirable.



186 BEHRMAN & HARKEMA

The most prominent and well-developed activity-based therapy (physical
rehabilitation) to date is “locomotor training’ (LT) [39-41,46,47]. A series
of guiding principles for training has emerged in the translation of findings
from basic science to the human condition [39—-41,46,47,63]. Scientists, ex-
amining the role of the spinal cord in controlling walking, discovered that
cats with complete mid-thoracic transactions of the spinal cord could gener-
ate a stepping response after intense daily and long-term practice of the task
of walking. Walking was facilitated by manual trainers assisting limb flex-
ion, reflex extensor activity via pinching of the tail and/or anal region, while
providing partial body weight support to the trunk by a sling suspension
[64]. Training involved optimizing normative stepping parameters including
speed of stepping and appropriate kinematics and kinetics.

Guiding principles of locomotor training

Guidelines for locomotor training provide a framework for clinical deci-
sion making, as well as a reference point for evaluating the potential applica-
tion of any new modality, equipment, or therapeutic component within LT.
Clinical choices can be made that are consistent with the framework (ie, no
weight bearing on the upper extremities during training on the treadmill)
for recovery or that are inconsistent (ie, use of a long-leg brace) and reflect
a choice for compensation. Although training protocols used by researchers
and clinicians vary [46], these guidelines represent a structured translation
from basic science evidence for the neural control of walking to therapeutic
principles for retraining walking. These guidelines will continue to be refined
and clarified [65,66] as research advances the science of locomotor training.

Four guiding principles of LT [46,47] are built on the premise of robustly
approximating the sensorimotor experience of walking [42] through repeti-
tive practice:

1. Maximize load bearing by the lower extremities and minimize load bear-
ing by the upper extremities. Increases in limb electromyographic ampli-
tude are associated with increasing load bearing in both animals and
humans after SCI as well as able-bodied individuals [67,68]. This physio-
logic response to the sensory input associated with load bearing and trans-
lated into a guiding principle provides the opportunity to improve
activation in muscles that under voluntary conditions (ie, manual muscle
testing) are weak or do not produce a contraction. Visintin and Barbeau
[34] observed that shared load bearing between the upper and lower limbs
diminished electromyographic (EMG) activity in the lower limbs. In con-
trast, providing partial body weight support through vertical suspension
produced a relative increase in lower limb EMG activity. Thus, minimiz-
ing upper limb loading during retraining by use of hand rails or parallel
bars is discouraged, and increasing vertical load bearing through the
legs is encouraged.
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2. Optimize the sensory cues for walking. Normal walking speed for an
adult ranges from 0.8 to 1.2 m/s [69] and affords the spatial-temporal
sequence of inputs that contribute to the characteristic sensorimotor ex-
perience of walking. Whether normal walking speed is a necessary com-
ponent to the ensemble of activity-dependent experience producing
a beneficial effect of LT continues to be a question of researchers [70].
Beres-Jones and Harkema [71] and Lunenburger and colleagues [72] ob-
served velocity-dependent modulation of EMG activity in persons with
both incomplete and complete SCI and able-bodied individuals. Again,
in an effort to increase muscle activation, the higher speeds may provide
a stronger stimulus response.

3. Optimize the kinematics (ie, trunk and extremities) for each motor task.
One critical kinematic component to successful walking is the transition
from stance to swing. This transition may be neurally activated by the
sensory input associated with hip extension (relative to an upright
trunk) and limb load bearing (muscle/tendon stretch, proprioception,
cutaneous input), followed by unloading of the limb while transferring
weight to the other limb. These two sensory elements, extension and
load, are part of the essential ensemble of afferent input affording the
transition and generation of activity from stance to swing or extension
to flexion [73,74]. Incorporating these elements into the training regime
is critical to initiating and generating flexion in the gait cycle.Because
the arms typically swing in reciprocal coordination with the lower limbs
while walking, this automatic pattern and kinematic component may be
of benefit in achieving a more complete sensory experience of walking.
Furthermore, armswing may contribute to activity-dependent plasticity
[75] and development of appropriate balance responses and is thus en-
couraged by some researchers and trainers [46,47] as opposed to a sup-
portive function by the upper extremities.

4. Maximize recovery strategies and minimize compensation strategies.
Recovery strategies promote use of the inherent biology of the nervous
system to generate motor responses within the usual kinematic frame-
work. Visintin and Barbeau [34] concluded that using parallel bars for
upper extremity (UE) support produced a forward flexed trunk, asym-
metry in gait, and use of compensatory strategies for swing initiation
such as ‘“hip-hiking” (eg, the trunk flexes laterally while raising the
hip and advancing the leg forward with the knee extended). By compar-
ison, vertical support provided a more upright trunk, hip extension and
loading promoting the transition from stance to swing, and relatively
less compensatory movement strategies while walking. The latter expe-
rience would be more consistent with the LT principles and a more ap-
propriate choice for retraining the nervous system. Throughout LT,
individuals are encouraged to attempt movements but are assisted, as
needed, to perform them to achieve the task-specific sensory experience,
ie, thus, movement without compensatory pattern.
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Locomotor training environments and progression
Body weight support and treadmill environment

For LT, the primary retraining for the capacity to walk occurs in the
treadmill environment. Barbeau and colleagues [76] first extended the train-
ing environment of the animal model studies to clinical application for hu-
mans after SCI. He and his colleagues developed an overhead suspension
system attached to a body harness worn by the subject while walking on
a treadmill [76,77]. Early experiments assessed the simple effect of body
weight support (BWS) on gait in able-bodied subjects [76,77]. Studies con-
tinue today to examine the effect of types of BWS and harness systems
[78-80]. Manufacturers of BWS systems offer varying specifications of con-
trol that offer relatively different approximations of the body’s center of
mass during walking and the ground reaction forces during loading and
propulsion [81].

The body weight support and treadmill (BWST) environment provides
a permissive environment in that it may afford the individual a walking ex-
perience that more closely approximates the actual sensorimotor pattern of
walking when compared with walking overground. In addition, the BWST
environment provides a heightened degree of control and quantification of
the sensorimotor experience relative to treadmill speed and BWS. In this en-
vironment, the spinal and supraspinal networks for locomotion are func-
tionally reorganized. This new training environment meets the demands of
retraining by affording the sensory experience of walking as well as the nec-
essary intensity of repetition and practice [41]. The number of steps that may
be achieved in one session in this environment when compared with over-
ground may be a critical component to successful retraining of the nervous
system. In some instances, BWS may not be necessary and simply the tread-
mill may provide an adequate stimulus to practice walking while approxi-
mating normal walking speeds [47].

Many individuals, however, cannot move a limb or do so awkwardly with
considerable physical and cognitive effort to achieve a step and often a kine-
matic incorrect step. These individuals require manual assistance of trainers
to (1) provide upright trunk support, (2) facilitate flexion and extension pat-
terns of limb activity, and (3) promote pelvic rotation and weight transfer
during loading of the stance limb [46,47,63,82]. Trainers in the clinical con-
text provide assistance as needed to promote activation of muscles within
the context of the limb trajectories for the stepping pattern, pelvic move-
ment, and trunk control. Proper ergonomic seats for the trainers at the level
of the treadmill with back and leg supports are a necessity for the repetitive
task of manual training [81]. A more detailed explanation of manual assis-
tance is provided in several case study reports [46,47].

Robotic-assistance was designed to provide an automated system of mov-
ing the legs in a stepping pattern on a treadmill using BWS [83-86]. A robot
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consisting of an exoskeleton with motors at the hip and knee joints and in-
tegrated with the BWST provides a consistent pattern of flexion and exten-
sion for stepping. Pelvic and trunk stabilization are provided via straps and
supports that minimize or eliminate movement. As a computer-controlled
system, BWS and treadmill speed can be varied in conjunction with the spa-
tial-temporal pattern controlled by hip and knee range of motion (ROM)
and step length. The robotic system may offer greater consistency of limb
trajectories for patterned stepping by eliminating therapist fatigue and
thus provides a greater duration of therapy. However, the robotic assistance
may provide a more stereotyped and consistent pattern of limb movement
than the alternative, manual assistance. In addition, manual assistance
allows for real-time decision-making by the therapist to adapt immediately
to the patient to achieve proper limb kinematics and the spatio-temporal
pattern. Further studies are needed to identify the most efficacious approach
to providing the needed assistance during retraining and the potential differ-
ential effects in the process of recovery of function.

LT-overground

With the ultimate aim of LT to improve or restore walking ability over-
ground, skills acquired in the treadmill environment must be assessed and
translated to overground. The same guiding principles are extended from
the treadmill to overground environment. Thus, use of the LT principles
has ramifications for how training occurs in the treadmill and overground en-
vironments, both in the clinic and at home. For instance, to maintain hip ex-
tension while walking with an assistive device introduced overground, the
individual must maintain an upright posture and minimize the upper extrem-
ity load-bearing on a device. Translation of the training principles beyond the
treadmill environment has been developed and studied as an integral compo-
nent of a locomotor training program by several researchers [47,87-89].

Furthermore, a new generation of assistive devices and options for use
of standard devices may develop that are consistent with the goal of recov-
ery of function. For instance, use of a walking or trekking pole (or pair)
may promote a more upright posture with minimal balance and weight-
bearing support in contrast to the conventional use of a single point
cane. The standard four-point walker used for gait training when reversed
(with the cross bar positioned behind the patient and open-end forward of
the patient) may also promote an upright posture with less weight bearing
on the arms.

LT as a rehabilitative strategy has been successful for many people with
acute and chronic incomplete SCI; however, varied results are reported
[46,63,66,85,89-95]. This variability may be caused by the differences among
therapists in the relative level of knowledge of the principles underlying re-
training of the nervous system, their skill in applying these principles, and
the effectiveness of the decisions that are made to progress the recovery as
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well as the intensity and duration of the intervention. Therapists who are
aware of the potential of the spinal networks and sensory signals to modu-
late muscle activation patterns will have the best chance of optimizing LT
for their patients. Implementing LT in the clinic is in the relatively early
stages of development, and future efforts should focus on education, train-
ing, and establishing standards. Optimizing the protocols for specific patient
populations is continually evolving as we simultaneously learn more from
ongoing studies. Efficient and effective translation of scientific and clinical
evidence to routine clinical practice will take collaborative efforts among sci-
entists, clinicians, and administrators.

Electrical stimulation to activate the neuromuscular system during
walking and standing

Although LT induces neuromuscular activation below the lesion by pro-
viding the appropriate sensory information back to the nervous system, use
of electrical stimulation achieves standing and walking by stimulating mus-
cles that are impaired. Electrical stimulation to the common peroneal nerve
to generate a flexor withdrawal response is often used during walking on the
treadmill with BWS and overground. The stimulation and flexor response
are timed to synchronize with the initiation of the swing phase. Training
with swing phase assist using electrical stimulation while walking in the
BWST environment has improved walking speed in individuals with AIS
C classification and asymmetrical LE function [66,91]. Similarly, Fung
and Barbeau [96] used repeated conditioning of the H-reflex to generate
a similar flexor response coordinated with the transition from terminal
stance to swing in individuals with incomplete SCI. Electrical stimulation
is an alternative means of activating sensory afferents and generating flexor
responses within the task of walking. Removal of the electrical stimulation
has resulted in sustained improvements and thus represents relatively per-
manent adaptability by the nervous system in individuals who could already
take steps [66,91]. In addition to use of electrical stimulation to generate
a flexor response, electrical stimulation has been also used to assist knee ex-
tension during the stance phase of walking [97,98]. Functional electrical
stimulation (FES) has an immediate effect on the gait and serves as a neuro-
prosthesis. Long-term use of FES-assisted walking has also resulted in some
increases in maximal overground walking speed [99].

Activity-based therapies

In the long term, LT will provide a behavioral therapy that indepen-
dently supports positive outcomes. It may also serve as a catalyst in tandem
with electrical stimulation or pharmacologic agents that when combined
form an even better response. Already, researchers have explored the com-
bined use of drugs and LT as well FES and LT to advance recovery [100—
102]. Thus, a continuum of physical rehabilitation interventions may be
considered and categorized as activity-based therapies (Table 1). The



Table 1

Physical rehabilitation interventions that promote recovery of function and/or compensation to regain function

Rehabilitation for mobility

Activity-based

Activity/compensation

Compensation

Intervention

Neuromuscular activity

Intervention

Neuromuscular activity

Intervention

Neuromuscular activity

Locomotor training
for stepping

Locomotor training
for standing

Muscle strengthening
below lesion level
FES cycling

Voluntary cycling

Intrinsic below
lesion level

Intrinsic below
lesion level

Intrinsic

Extrinsic below
level of the lesion

Intrinsic below
level of the lesion

Walking with FES for

individual movements

or joints

Ankle foot orthotic use
during walking

Ambulation with FES
implanted electrodes
Standing with FES

Standing with braces

Intrinsic below lesion
level with extrinsic
activation for deficits

Intrinsic below lesion
level with bracing
for deficits

Extrinsic below lesion
level

Extrinsic below lesion
level

Intrinsic below lesion
level with bracing
replacing function

Walking with
reciprocating gait
orthosis (RGO) or
long-leg braces

Power or manual
wheelchair

Standing frame

Muscle strengthening
Above Lesion Level

None; bracing and
mechanical device
for deficits

None

Minimal

None

AANINT OO TYNIAS dHLdV NOILVIITISVHEY TVOISAHd
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criteria, activity-based versus compensation, intrinsic versus extrinsic acti-
vation of the nervous system, and activation of the nervous system below
or above the lesion are used to categorize rehabilitation strategies for
mobility.

For example, even individuals with clinically complete injury can experi-
ence activity-based therapies with manual or robotic assistance and when
electrical stimulation is used on muscles below the level of the lesion during
stand and step training [97-99,103]. In individuals with incomplete injury,
this can also occur with many different interventions (ie, FES cycling?)
[104,105] but with a primary aim of facilitating activation of the neuromus-
cular system below the level of lesion [104,105]. A further consideration is
the activation of the nervous system by extrinsic means, such as electrical
stimulation, compared with activation intrinsically by the nervous system.
An example of intrinsic activation is the increase in leg extensor muscle
EMG activity in response to increasing vertical load while standing in
both nondisabled persons and persons with complete and incomplete spinal
cord injuries [67]. Also important is a distinction between an outcome that
achieves a functional goal compared with recovery of a function. Learning
to drive a powered wheelchair with a mouthpiece is considered a ““functional
goal,” whereas improving the ability to stand or step is an example of func-
tional recovery of the neuromuscular system.

FES may be a tool to improve standing or stepping. If appropriate sen-
sory information is important for retraining, then can current stimulation
parameters be effective in relearning or can future FES stimulation para-
digms be incorporated with the intrinsic properties of the spinal cord?
Whether FES is used through implanted electrodes or surface stimulation
to muscles, recovery of function will be established if the stimulation is no
longer needed to perform the task. If the FES remains necessary and the
nervous system is quiescent in its absence, then it is likely that FES under
those conditions is not contributing to the recovery of function. In this in-
stance, FES is acting in a compensatory role as a neuroprosthesis. Further
studies are needed to understand the most optimal approach to retraining
the nervous system and to determine the most appropriate use of electrical
stimulation in severely impaired individuals.

Strengthening muscles above the level of the lesion is a compensation-
based therapy; however, activating and strengthening muscles below the
level of the lesion is an activity-based therapy. Whether intrinsically driving
[106] or extrinsically activating muscles below the level of the lesion
[104,107-110], neuromuscular adaptations result in greater voluntary torque
and increased rate of torque production in persons with incomplete and
complete SCI. Persistence of such benefits is dependent on the capacity of
the individual to continue neural activation within the context of daily
function or remain dependent on extrinsic input for activation. Whether
FES cycling promotes recovery of muscle activation specific to the task of
walking has yet to be determined.
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Outcome measures: functional goals and recovery of function

The outcome measures studied are critical to interpreting the effect and
clinical meaningfulness of compensation-based and activity-based therapies,
including LT. Because physical rehabilitation as an agent for recovery is
a new perspective, comparable outcome measures need to be developed
that measure recovery. Current clinical measures address the ability to per-
form a task as a functional goal but may not specifically address recovery of
function [25]. A task may be performed using a compensatory strategy or
via recovery of the neuromuscular control specific to that task. Achievement
of the compensatory behavior is consistent with gaining a new ability to ac-
complish a goal (eg, use of forearm crutches to bear partial weight while us-
ing a head-hip strategy to advance a pair of long-leg braces forward for
ambulation), whereas retraining and recovery of function entails regaining
the specific function associated with the task (eg, activating limb extension
and support for standing and flexor activity for swing).

Clinical outcome measures target achieving the task goal, for example,
walking performance [87,111,112]. Outcome measures include walking
speed (m/s) at self-selected and fastest speeds (treadmill or overground),
time to traverse prescribed distances (50 m walk test), endurance—distance
walked in set time, amount of assistance required (ie, braces, assistive device,
or physical assistance) (WISCI II) [113,114], ability to negotiate obstacles,
and balance ability. The assessment of clinical meaningfulness of an out-
come is particularly important. Gait speed, as a continuous variable, may
provide the most meaningful outcome relative to the achievement of speeds
standard for adults (1.2 m/s) [69] and required for community ambulation
for safe street crossing at traffic lights [115-119]. Percent changes in gait
speed may be statistically significant but may portray an inflated view of
meaningful value. For example, when a 100% improvement in gait speed re-
flects a change from 0.05 m/s to 0.1 m/s the change may be negligible to the
observer and, unfortunately, of little consequence as a behavioral gain.
However, a 100% improvement in gait speed from 0.4 to 0.8 m/s may be
a meaningful change and reflect a functional shift from household to
community ambulator. For gait speed to be a measure of recovery, the var-
iability of the measure and the clinical meaning of improved speed should be
established, as well as consider the influence of different assistive devices.

Walking recovery, regaining the specific functions that afford walking ca-
pacity, will require new measures reflecting interim, yet, progressive changes
across training time. Instruments that measure specific function for walking
entail the capacity to produce a reciprocal stepping pattern, balance during
propulsion, and adaptation to the environment [39,120]. A single measure is
unlikely to reflect the recovery of function of an individual or subpopula-
tions. Composite outcome measures or targeted measures for specific phases
of recovery may be more reflective of recovery. Assessing the neuromuscular
capacity below the level of lesion may provide a more objective and sensitive
assessment during recovery [59-62], The presence of clonus and spasticity
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may also now be considered as a positive indication that neural networks are
active and have the potential for functional reorganization rather than as
a consequence of loss of supraspinal input that prohibits recovery of
motor function that should be eliminated by pharmacologic or surgical
interventions [121,122].

As the treadmill environment affords a permissive and controlled envi-
ronment for retraining, it may also offer an environment for assessing the
nervous systems’ capacity to step, balance, and adapt as well as assessing
the recovery of walking specific functions. In this environment, for instance,
BWS required to maintain lower limb extension or upright posture may be
titrated and quantified indicating increments of capacity and recovery from
an initial evaluation through a training process. Incremental gains observed
in the training environment are likely to be more sensitive and informative
of capacity/recovery when compared with the gains observed by routine
clinical measures overground (eg, self-selected gait speed). Thresholds of re-
covery specific to walking capacity may ultimately correlate with clinical
gains overground. For example, a patient demonstrated no significant gains
in gait speed overground BWS, and manual assistance had decreased and
been eliminated while walking in the BWS environment [46]. Thus, the con-
tinual decline in BWS and manual assistance relative to improved control of
the trunk, upright posture, and limb flexion during walking can identify
changes in recovery before the current outcomes. Other means of measure-
ment may afford greater quantification in this environment and are a critical
area of ongoing and future development. Secondary and tertiary benefits of
therapy on the ability to perform activities of daily living, health, and qual-
ity of life may also be considered as outcome measures [93,94,123].

Clinical decision making for recovery of function

Much of today’s research [66,89,124] emphasis is on comparing the effec-
tiveness or benefits of one therapeutic intervention compared with another
in sample populations grouped according to AIS classification. Because ac-
tivity-based therapy aimed at recovery after SCI represents a paradigm shift,
our efforts as researchers should parallel this shift of emphasis. The informa-
tion gained comparing one intervention with another may be insufficient
when considering the complexity of SCI and its consequences on walking.
The heterogeneity of the SCI population makes the interpretation of find-
ings across the varying studies limited even when the AIS classification is
used to categorize injury severity. Although this classification represents
neurologic recovery of sensorimotor function based on voluntary control,
it may not adequately assess the residual motor capacity specific to the re-
covery of function or the potential to retrain the spinal networks
[125,126]. Interpreting the literature and, more importantly, designing re-
search studies and interventions will require scientists and clinicians to
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better categorize the impairments and task-specific functional limitations
secondary to injury and its consequences.

Programs of therapy will likely differ between two individuals that are
both AIS C and that show dramatically different lower extremity and trunk
activation patterns [127]. The individual with predominant flexor activity
may require load-bearing activity to promote extensor activity during
stance. The individual with low levels of activation may benefit from an
extrinsic-based approach to increase not only activation but torque produc-
tion. Additionally, therapies provided acutely may differ from those pro-
vided in chronic states after SCI. Combined therapies may be appropriate
to activate a flexor pattern in some individuals with this functional deficit
yet not appropriate for others. The consistency of repetition by robotic-
assist training may provide the intensity necessary to activate or change
flexor activity to alternating flexor and extensor activity yet only is the first
step in a series of therapeutic steps [85,92,128]. Furthermore, pharmacology
may be an adjunct to LT or cycling or other activity-based therapy. As a
hybrid therapy, this intervention may provide a timely step toward recovery
and constitute an important clinical treatment decision.

Summary

Physical rehabilitation as an agent for recovery reflects a paradigm shift
in our expectations after SCI. The shift is from the view of SCI as an event
from which one does not recover significant function and thus requires com-
pensation for functional loss and impairment to the view that it is possible
to restore function through activity-dependent therapies using intrinsic
properties of the nervous system to generate and retrain motor responses.
Recovery thus requires retraining of the neuromuscular system to execute
a task. Compensation replicates the task by using assistive devices, braces,
a wheelchair, or alternative movement patterns to reach a goal that allows
the individual to function in their daily lives.

Many studies now support that recovery can be facilitated by physical re-
habilitation interventions, and the improvement of neuromuscular function
can continue to occur even years after injury. If compensation methods are
inconsistent with the functional recovery, then the clinician’s challenge is to
partner with the patient to determine the best practice guidelines to achieve
daily activities of life by regaining lost functions while also continuing to
promote the recovery of function. Future studies should be designed to
identify the specific patient populations that can most effectively benefit
from activity-based therapies and to continue to understand neuroplasticity
to improve recovery of function in all patient populations.

A clinical decision-making algorithm for best practice will incorporate
therapies, in combination or in sequence, that meet the individual’s needs
throughout the course of recovery. Recovery will thus entail a program of
therapies [129] and not a single therapy to meet the changing needs of the
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patient as he or she advances on the path to recovery. Current challenges to
these advances include classification of a heterogeneous population accord-
ing to task-specific residual motor control [130], sufficient outcome measures
to compare interventions, and the cost to implement rehabilitation clinical
trials. Although this review has targeted emerging activity-based therapies
for recovery of walking, application of activity-dependent neuroplasticity
to other physiologic functions may prove to be valid. The continued part-
nership of scientists, clinicians, and consumers will advance the agenda for-
ward to consumer priorities for recovery of other important functions after
spinal cord injury [131].
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